If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+12x-7=0
a = 11; b = 12; c = -7;
Δ = b2-4ac
Δ = 122-4·11·(-7)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{113}}{2*11}=\frac{-12-2\sqrt{113}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{113}}{2*11}=\frac{-12+2\sqrt{113}}{22} $
| 12.95+s=44 | | -10(x+9)+568=15+13 | | 5x-23=43 | | -x-2=-44 | | (x/3)-6=2 | | -10(x+9)+598=15+13 | | 4x+7=3x+-12+20 | | 5+3/10x=-4 | | 7a-5=5a+7 | | 7h/9-2=653/63 | | 3(x+2)+4x-5=7(x-+)-6 | | 5(-5v-5)=-25+5v | | 4(-8x=5)=32x-26 | | 3/4n-7=8 | | 0.8(x-2)=9.6 | | 0.4+0.25(90-x)=34 | | 5x2+15=140 | | -(6y+1)-(5y-2)=-3 | | (2x+6)/2=13 | | (12y+9)+(15y-6)=180 | | 2/5=y/10 | | 0.4(x-2)=4.8 | | 0.15x+22.5=34 | | 4(r-7)+2=5(r+3)-22 | | 3=20/5+b | | 0.15x+25=31 | | 9m+-13m+-8=-4 | | 8+2w=1-2w+5 | | 5x+0.4=2.8-1.2x | | x-(-7.4)=3.2 | | 16-12g=-12-16g | | 160(3x)=195(2x) |